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Gleason-Type Theorems for Signed Measures on 
Orthomodular Posets of Projections on Linear 
Spaces 
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We consider some orthomodular posets which are not lattices and the Gleason- 
type theorems for signed measures on them. 

The basic structure of  the quantum probability theory is the set I I ( H )  
of  all Hermitian projections on a complex or real Hilbert space H. This set 
is endowed with the orthomodular  partially ordered set (OMPoset) structure, 
i.e., with an ordering -< (P <- Q iff PQ = QP = P) and with an involutive 
antiautomorphism ( - ) '  (P '  = I - P) which satisfy the axioms: 

1. there exist the greatest, 1, and the least, 0, elements. 
2. a -< b implies b '  -< a ' ,  ( a ' ) '  = a, 0 '  = 1. 
3. I f  a -< b '  (in this case we write a _L b and call a and b orthogonal),  

then there exists the supremum a v b. 
4. I f  a <-- b, then there exists a c -< a '  such that b = a v c. 

Studies have been made of  probability measures (states) on I I (H) ,  i.e., 
maps ~: I I ( H )  --+ [0, 1] such that: 

(S1) b~(1) = I. 
( S 2 )  t.t(P1 + P2 + "" ") = D ( P I )  + }-L(P2) + "" ") for every sequence of  

mutually orthogonal projections in I I (H) .  

The welt-known Gleason (1957) theorem establishes a representation 
for every state bt on H ( H )  in the case d im(H) - 3: 

~(P)  = tr(TP) for all P e I I (H) ,  T a nuclear positive operator (1) 
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In Mushtari (1989) I proposed to develop a measure theory for another 
OMP of projections, namely the set ~ ( H )  of all (not necessarily Hermitian) 
continuous projections on H. This set is endowed with the OMP structure in 
the same way as H(H) is. In Section 1, I draw the attention of the reader to 
some results of Mushtari (1989) concerning the OMP ~(H) ,  in particular, 
to an analog for the Gleason theorem. In Section 2, a new definition of a 
signed measure on ~ ( H )  is given which is defined with the OMP structure. 
In Section 3, I discuss some possible generalizations of such Gleason-type 
theorems for OMP ~(X)  of projections on a non-Hilbertian topological linear 
(or simply linear) space X over some field F. I sketch a proof of the first 
result of this kind, namely for the case when X is a finite-dimensional linear 
space over the field Q of rationals. 

1. THE OMP ~(H)  

Now I give a general idea of the transition H(H) --> ~ (H) .  

Definition 1. An ordered pair (a, b) of elements of a lattice T is called 
(Maeda and Maeda, 1970) an M-pair, and we write (a, k)M [respectively an 
M*-pair and we write (a, b)M*], if 

a ^ ( b v c )  = ( a ^ b )  v c  for all c - < a  (2) 

[respectively (a v b) ^ c = a v (b A C) for all c ----- a]. 

Definition 2. A lattice T is called M-symmetric (respectively M *-symmet- 
ric) if (a, b)M implies (b, a)M [respectively (a, b)M* implies (b, a)M*]. 

Theorem 1. Let T be an M-symmetric and M*-symmetric lattice with 
the greatest, 1, and the least, 0, elements and let L be the set of all (a, b) in 
T such that (a) a v b = 1, (b) a A b = 0, (c) (a, b)M, (a, b)M*. Then L is 
an OMP endowed with (i) the order relation (a, b) -< (c, d) iff a -< c, b -> 
d, and (ii) the involutive antiautomorphism (a, b)' = (b, a). 

Theorem 2. Let X be a Hausdorff linear topological space and E and F 
be elements of the lattice H(X) of all closed linear subspaces of X. A pair 
(E, F)  is an M*-pair if and only if E + F is closed. 

Corollary. The lattice II(X) of all closed linear subspaces of a Hausdorff 
locally convex space X is M-symmetric and M*-symmetric. The OMP ~ ( H )  
is constructed from II(X) as in Theorem 1. 

Remark 1. The simplest five-element nonmodular lattice is not M-sym- 
metric and not M*-symmetric. 

Now we proceed to study the case when X coincides with a real Hilbert 
space H. Unfortunately, the OMP ~ ( H )  [as well as the measure theory on 
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~ ( H ) ]  does not have some good properties of I I (HY).  It is easy to see that 
the following statements are true. 

Proposition 1. (i) If dim(H) > 2, then ~ ( H )  is not a lattice. (ii) If  
dim(H) = ~, then ~ ( H )  is not a cr-orthocomplete OMP [i.e., there exists a 
sequence of mutually orthogonal projections P,  ~ ~ ( H )  such that the supre- 
mum vnP~ does not exist]. (iii) ~ ( H )  = U{IIa:  A runs over the set of all 
positive invertible operators on H }, where H A is the OMP of all projections 
which are Hermitian with respect to the scalar product (x, Y)A = (Ax, y). 

Proposition 2. If  IX is a nonzero function on ~ ( H )  defined by (1) with 
a nuclear operator T and if IX -> 0 on ~ ( H ) ,  then dim(H) < co and T = 
const. I. If  dim(H) = co, then any nonzero signed measure ix on ~ ( H )  is not 
~-additive. 

So, if we replace one metric ( . ,  .) by another metric ( . ,  ")a, we spoil 
a state and make it a signed measure. Therefore, in the case of  the OMP 
~ ( H )  we have to deal with the signed measures, but no states. Unfortunately, 
even in the classical case of the OMP l i (H)  the Gleason theorem for signed 
measures ix is not true for finite-dimensional H. In fact, it is well known that 
there exists an additive [f(x + y) = f(x) + f (y) ]  but not linear function f on 
the real line R. Using this function, we can spoil a still good signed measure 
ix on I I (H) ,  defined by the relation (1). We replace ix b y f O  ix. It is easy to 
see t h a t f O  IX is a signed measure and does not satisfy (1). So the Gleason 
theorem for finite-dimensional signed measures need some supplementary 
conditions, namely that of the boundedness of IX. 

This difficulty leads to the following definition of signed measures on 
the OMP ~ ( H )  

Definition 3. A function ix: ~ ( H )  ---> R is called a signed measure if 
its restriction to every sub-OMP H A (H) is cr-additive and bounded. 

Theorem 3. Let H be a real Hilbert space, dim(H) -> 3. Then every 
signed measure ix on the OMP ~ ( H )  admits the representation (1) with a 
unique nuclear operator T. 

Sketch of  the Proof It follows from the classical Gleason representation 
theorem that (1) holds for the restriction of ix to every HA(H) with some 
operator T = T(A). Our task is to prove that all the T(A) can be chosen equal 
to each other. In order to establish this, we use the following obvious remark: 
for all different A and B the operators T(A) and T(B) need be such that the 
restrictions of the defined by (1) and T(A) or by (1) and T(B) signed measures 
to the intersection HA(H) C) lIB(H) are equal to each other and to the 
restriction of ix. In order to simplify the calculation we represent the signed 
measure ix as a sum ix = IXH + ixS of the Hermitian part ixH [i.e., IXH(P) = 
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~zH(P*) for all P] and the skew-Hermitian one Its [P~s(P) = -p~s(P*) for all 
P]. We prove (1) for P~t4 and ~s separately. In the case p, = P4t we establish 
the equality T(A) = T(/) for all A where all T(A) are chosen Hermitian. For 
this we need the Gleason representation only for the projections on the two- 
dimensional subspaces (taking into account that the whole H has a greater 
dimension and so the Gleason theorem holds). The case & = iXs, where T 
is chosen skew-Hermitian, is more difficult. In fact, II = l-I(/) consists of 
Hermitian operators and P,s = 0 on II, therefore the operator T(/) may be 
chosen arbitrarily. So it is not easy to fix T. That is why in this case we use 
the three-dimensional Gleason theorem. The procedure above permits us to 
establish the theorem in the finite-dimensional case, In the infinite-dimen- 
sional case we have some supplementary difficulty in establishing the nucle- 
arity of T. 

An analogous theorem [a slightly modified (1)] is true for signed mea- 
sures ~ ( H )  in the case of the complex Hilbert space H. 

Remark 2. Using a technique developed for the Hermitian case Matvej- 
chuk (1981), this theorem is generalized to signed measures defined on 
for various classes of yon Neumann algebras (Matvejchuk, 1991). 

2. AN INTERNAL GLEASON THEOREM FOR ~ ( H )  

Now we will discuss the question: Is an internal formulation of Theorem 
3 possible? Unfortunately, Definition 3 of a signed measure is not internal, 
because subOMPosets HA (H) are defined from the metrical structure of the 
space H and not only from the ordering and the involutive antiautomorphism 
on the OMP ~(H) .  So, some internal reformulation of this definition should 
be of interest. Such a reformulation is possible in the infinite-dimensional 
case because of a nice theorem due to Dorofeev and Sherstnev (1990). Namely 
they have proved that in the case dim(H) = ~ every or-additive signed 
measure on H(H) is bounded automatically. As we have seen in Proposition 
2, we must give a new definition of cr-additivity which should be not only 
internal but also valid for the functions defined by (1). With this aim in view 
we introduce the following definition: 

Definition 4. Let dim/- /= ~. A function tx: ~ ( H )  ---> R is called a ~- 
additive signed measure if its restriction to every cr-subalgebra of ~ ( H )  is 
o--additive. 

Theorem 4. Let dim(H) = ~. Then a function tx: ~ (H)  --> R is a or- 
additive signed measure if and only if it satisfies (l). 

The part "only i f"  follows from Theorem 3 and the theorem of Dorofeev 
and Sherstnev. The part " i f "  follows from the following general property of 
sequenes in Banach reflexive spaces. 
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Theorem 5. Let (P,,) be a sequence of continuous pairwise orthogonal 
projections on a reflexive Banach space X; let it be given that any subsequence 
P~(k) of (P~) has the supremum in ~(X).  Then a series ~ ,  P,, is unconditionally 
pointwise convergent in the strong topology. 

Obviously if the series Z,, P,  satisfies the condition in Theorem 5, then 
for every nuclear operator T the series ~;n tr(TP,) is convergent. So the new 
formulation of the ~r-additive signed measure is not only internal, but also 
it implies the Gleason theorem. 

3. GLEASON-TYPE THEOREM FOR PROJECTIONS ON 
RATIONAL LINEAR SPACES 

The definition of the ~r-additive signed measure we propose is not related 
to any metric or scalar product structure, it does not use the scalar products 
on the space X. Therefore, Definition 3 gives the possibility to formulate 
(unfortunately only formulate) some generalizations of Theorem 4 for various 
infinite-dimensional linear topological spaces, for example, for real or com- 
plex Banach and linear topological spaces and even forp-adic linear topologi- 
cal spaces. In these cases good scalar products on the space is not known. 

But how should one prove such theorems? The classical Gleason theorem 
does not have sense without the OMP II defined by means of the scalar 
product structure and so cannot be used in these cases, unlike the proof of 
Theorem 3. In the general situation we have lost this basic tool. Obviously 
we may artificially introduce scalar products on some finite-dimensional 
subspaces, but this gives nothing, as the Gleason theorem in the finite- 
dimensional case is not valid. We see that any representation (1) being proved 
without use of  the classical Gleason theorem for states would be of interest. 

The rest of the paper presents an attempt to find the new tool we need. 
Let us summarize what we can do. What troubles us? The function f and the 
counterexample f o IX must vanish if we consider f only on Q and so Ix 
taking values in Q. Therefore, we come to the following theorem. 

Theorem 6. Let ~(Qn) be the OMP of all linear projections on the space 
Qn over the rationals field, n >- 3, IX: ~(Qn) ___> Q be a signed measure, i.e., 

Ix(P, + P2) = IX(P0 + Ix(P2) (3) 

for mutually orthogonal projections P1 and P2 in ~(Q") .  Then i x satisfies the 
Gleason representation. 

IX(P) = tr(TP) for all P ~ ~3(Q") (4) 

where T is a linear operator on Q". The operator T is defined by IX uniquely. 
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Sketch of  the Proof. First we consider the case n = 3. 
Step O. First we will explain what we will prove. Introduce projections 

Pl, P2 . . . . .  P9 whose matrices define a linear basis in the nine-dimensional 
space of all 3 • 3 rational matrices. We denote y'  | y an operator on Q3 
defined by x --~ y'(x)y. For the sake of definiteness we admit that to a linear 
basis e = (1, 0, 0), f = (0, 1, 0), g = (0, 0, 1) with the biorthogonal basis 
{e', f ' ,  g'} there corresponds the following basis of projections: 

Pl = e ' @ e ,  P 2 = f ' @ f ,  P 3 = g ' @ g  

P4 = (e' + f ' )  | e, Ps = (e' + g') | e, P6 = (e' + f ' )  @ f 

P 7 = ( f '  + g ' ) @ f ,  es = (e' + g') @ g, Pg = ( f '  + g') @ g 
(5) 

Sometimes we will denote by Pi(e, f, g) = Pi the projections defined by a 
basis {e,f, g} in Q3 in (5). 

Suppose that ix satisfies (4); then the matrix T is reproduced by the 
values IX(Pi), i -< 9. Therefore, we have only to prove that every signed 
measure ix on ~(Q3) is defined uniquely by its values on all P~, i -< 9. In 
fact, if this is the case, then Ix coincides with a signed measure defined by 
(4) equal to Ix(P~) for all Pi. 

What tool do we have in order to prove the uniqueness? We have just 
only all the equations 

IX(PI) + tx(P~) + IX(P~) - IX(P,) - IX(P2) - IX(P3) = 0 (6) 

for all triples of mutually orthogonal one-dimensional projections {P~, 
P~, P~}. So we start by fixing a "domain of uniqueness" {Pi: i -< 9}. Our 
task is to enlarge this domain to the whole ~(Q3). 

Step 1. Let us now consider the set ~0 of all projections whose matrix 
elements with respect to the basis {e, f, g} take values only in the set { - 1 ,  
0, + 1 }. Obviously the set ~0 contains all the basic projections Pi. The 
cardinality of this set is equal to 87. 

Computer Lemma. If two signed measures IX and v coincide on some 
nine linearly independent elements of ~0,  then these signed measures coincide 
on the whole ~0. 

Proof of the lemma consists in the calculation of the range of the system 
of all equations of type (6) where the triples {PI, P~, P~} are taken from ~o. 
The computer says that the number of such equations is equal to 105 and 
the range of the system is equal to 78 (=  87 - 9). 

Step 2. The set ~0 is a large one and contains linear bases of the form 
{Pi(x, y, z): i ----- 9} which are distinct from the basis (Pi) and which are 
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defined as (Pi) by linear bases {x, y, z} of Q3 distinct from {e, f,  g}. By 
means of this we can enlarge the domain of uniqueness ~0 of the signed 
measure and prove the following. 

Fundamental Lemma. Ira signed measure is defined on the nine elements 
of the basis (Pi(x, y, z): i -< 9), then this signed measure is defined uniquely 
on every projection whose matrix elements with respect to the basis (x, y, z) 
are integers. 

Remark 3. Denote a set of all projections in the lemma by ~(x, y, z; 
Z). The following step is more complicated. In order to understand the 
situation let us consider a simple Gleason signed measure IX defined by 
(1) and an operator T = Pt(e, f,  g) and consider some projection P with a 
matrix [Po] such that Ptl = 1/n where n is a large integer. If we succeed in 
proving the theorem, then the equality ix(P) = 1/n should be proved too. We 
can use in our proof only equations of the type (6), i.e., linear equations with 
coefficients - 1 ,  + 1, 0 where the right-hand sides are integers [they are the 
numbers Ix(P) in such equations where P ~ ~(e , f ,  g; Z)]. So the determinant 
of the system must be divisible by n. Still, to invent a matrix [without any 
relation to (6)] containing only numbers {1, 0, - 1}  with a determinant 
dividing n is not easy. 

Step 3. We consider now the set ~(e,  f, g; p) of all projections such 
that all matrix elements with respect to the basis (e, f, g) are numbers of type 
re~p, where m is an integer and p is a fixed power of a prime number. We 
present ~(e,  f, g; p) as a union of some sets of type ~(x, y, z; Z) where a 
triple {x, y, z} runs over some set ~ of bases. In addition, the sets ~(x, y, 
z; Z) are such that the nine-element basis {Pi(x, y, z): i <- 9} in ~(x, y, z; 
Z) has the following property: only two elements of this basis do not belong 
to ~(e,  f, g; Z). We connect every such ~(x, y, z; Z) with another one ~(xl ,  
y~, zl; Z) so that they have four common elements. These four elements 
define four equations which connect the basic elements in both sets. The 
determinant of the system is not null. This includes both sets ~(x, y, z; Z) 
and ~(xl,  Yl, Zl; Z) simultaneously in the domain of uniqueness and so is 
the whole ~(e,  f, g; p). 

Step 4 finishes the proof for n = 3. We consider a projection P with 
matrix elements m/pq, where m is integer and p, q are fixed powers of 
different prime numbers. We prove that P is included in a triple {P, P' ,  P"} 
where P' ~ ~ (e , f ,  g; p) and P" ~ ~(e , f ,  g; q). So a number ix(P) is defined 
uniquely by Ix(P') and Ix(P"). Therefore, the general case is reduced to that 
in step 3. 

Step 5 proves by induction the theorem for an arbitrary n. 

Remark 4. In fact in steps I, 2, and 5 we have proved Theorem 6 
for ~(Zn). 
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Theorem 6 admits another pure algebraic formulation: 

Theorem 7. Every rational-valued additive function on the set of all 
idempotents of Hom(Q", Q~), where n --- 3, admits an additive extension 
onto Hom(Q n, Q"). 

Except for finite-dimensional rational linear spaces, Theorem 7 is true 
for finite-dimensional spaces over residue fields. The proof is the same as 
that of the fundamental lemma, but the value of the determinant in step 1 is 
important. This determinant is equal to 1. When we consider a finite field, 
we represent it as a linear space over a residue field. So we have the follow- 
ing result. 

Theorem 8. Let F be a finite field, n -> 3. Every additive function on 
the set of all idempotents of Hom(F", F n) taking values in F admits an 
additive extension onto the whole Hom(F n, Fn). 

In concluding the paper, I list several unsolved problems. 

Problem A. Can Theorem 3 be generalized to signed measures defined 
on the OMP of all projections on a real or p-adic Banach space X? 

Problem B. Can various spaces that are non-Banach and even not locally 
convex be taken as H in Theorem 3? 

Problem C. A curious case is that when X is the space L~ 1) of all 
random variables defined on the probability space (0, 1) with the Lebesgue 
measure, endowed with the topology of convergence in probability. Is the 
OMP ~ on the space L~ 1) nonatomic? 

Problem D. Does at least one pair of closed subspaces that are topological 
complements of each other exist in any complete metric linear space? 

Problem E. Given the condition of Theorem 2, is it possible using only 
the OMP-structure to restore by L some lattice T~ such that L is constructed 
by T~ as in Theorem 1 ? It seems that this is impossible. In fact, let T~ itself 
be an OMP. Then we can present an element (a, b) in L as a pair (a, b'). 
Therefore, we cannot be sure that we restore a, but not b'. There is of 
interest the result of Ovchinnikov (1993), who proved that the family of all 
subOMPosets I I  A (H) is invariant under all automorphisms of the OMP ~(H) .  

Problem F. Let R, R~ be two rings, ~ be the set of all idempotents of 
R, and ix: ~ --~ R~ be an additive operator. When does jx admit an additive 
extension to the whole R? 

I hope that the generalization of Theorem 6 for linear spaces over an 
arbitrary field of the characteristic 0 is true, too. Such a result would give a 
possibility to solve Problem A. 
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Problem G. It would be of  interest to prove Theorem 6 for the OMP 
I I ( Q  n) of  all projections which are Hermitian with respect to the natural 
scalar product defined by some basis. This problem seems to be very difficult. 
Even if we succeed to find some "domain of  uniqueness" o f  a signed measure, 
it should be difficult to enlarge it, i.e., to make a transition f rom one basis 
related to our "domain of  uniqueness" to another one. The situation differs 
f rom that of  the pair H(H) ,  ~ ( H ) ;  the I I  case is more difficult. 

It would appear to be o f  interest to examine such theorems for the lattice 
of  Hermitian projections over residue rings considered by J. Flachsmeyer  at 
this conference. But this Flachsmeyer  problem seems to be a difficult problem 
in number theory. 
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